
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 15, 51-58 (1992)

STRATEGIES FOR PARALLELIZING A NAVIER-STOKES
CODE ON THE INTEL TOUCHSTONE MACHINES

JOCHEM HAUSER
European Space Research and Technology Centre, P.O. Box 299, 2200 AG Noordwijk. The Netherlands

AND

ROY WILLIAMS
Concurrent Supercomputer Facility. Cali&ornia Institule of Technology. Pasadena. CA 91125. U.S.A.

SUMMARY
The purpose of this paper is to predict the efficiency of the Navier-Stokes code NSS* which will run on an
MIMD architecture parallel machine. Computations are performed using a three-dimensional overlapping
structured multiblock grid. Each processor works with some of these blocks and exchanges data across the
boundaries of the blocks. The efficiency of such a code depends on the number of grid points per processor,
the amount of computation per grid point and the amount of communication per boundary point. In this
paper we estimate these quantities for NSS* and present measurements of communication times for two
parallel machines, the Intel Touchstone Delta machine and an Intel iPSC/860 machine, consisting of 520
and 64 Intel i860 processors respectively. The peak performance of the Delta machine is 32 Gflop. Secondly
it is shown how,-starting from a seven-block grid of about 5OOOOOO points for the Hermes space plane, a
mesh of 5 12 equally sized blocks is constructed retaining the original topology. This example demonstrates
that multiblock grids provide sufficient control over both the number and size of blocks. Therefore it will be
possible to simulate realistic configurations on massively parallel systems with a specified number of
processors while achieving good quality load balancing.

KEY WORDS Aerodynamic simulation Multiblock grids Massively parallel systems
Communication load for Navier-Stokes codes

1. COMPUTATIONAL REQUIREMENTS IN AEROSPACE DESIGN

The design and analysis of new generations of aircraft and hypersonic vehicles require accurate
values for critical quantities. For example, a drag reduction of 0 5 % for a new aircraft is
considered substantial progress; surface temperatures for the European space plane Hermes must
be known within 50 K during the re-entry phase when maximum heat flux occurs.

The National Aerospace Plane (NASP) in the United States and the Sanger two-stage-to-orbit
vehicle in Germany form a new generation of air-breathing vehicles which demand integration of
the airframe and propulsion systems. Wind tunnel testing is very difficult in the extreme flight
conditions of these vehicles,' so that their design and analysis will be based to a large extent on
numerical simulation including viscosity, non-equilibrium chemistry and combustion. As the air
starts to react, new species are created which are described by additional conservation equations.
A multitemperature model may be needed to compute the vibrational temperatures of the
diatomic species. At temperatures above 10 OOO K ionization occurs, resulting in additional
species. Combustion models for hydrogen/air may have 16 species.

027 1-2091/92/13005 l-O8$W.W
0 1992 by John Wiley & Sons, Ltd.

Received July 1991
Revised November 1991

52 J. HAUSER AND R. WILLIAMS

Hence the problem is to solve a large system of coupled non-linear PDEs in three dimensions
with a complex geometry. In general the time scales of the flow and the chemistry are different,
leading to a stiff system. To adequately resolve the viscous boundary layer, the grid must be
clustered near the surface of the vehicle, leading to highly stretched meshes and thus reducing the
convergence rate.

For air-breathing vehicles we must also model the transition from laminar to turbulent flow.
Turbulence modelling increases the computational cost by either calculating the turbulent
viscosity locally or by introducing a turbulent transport model such as the k--E model (k is the
turbulent energy and E the dissipation rate). The number of physical variables is also increased,
but also more simulations are required because of the uncertainty of turbulence modelling.

From the foregoing it is clear that such an accuracy can only be achieved with very fine meshes.
Present calculations use 1-3 million grid points, while a satisfactory solution would really need
10 million. We give as an example the computing time for the NSS* code for the Space Shuttle
using 200000 points. Running on one processor of a Cray YMP, each iteration takes 8 s and
convergence of the pressure is achieved in 2000 iterations, making a total running time of about
5 h. Convergence of the heat flux solution would require a further factor of five.

The total number of floating point operations for a convergent heat flux solution on a mesh of
10 million grid points is about 5 x 1014. If a 1 Tflop machine were available with an assumed
sustained performance of 250 Gflops (optimistic), it would take approximately 2000 s to solve the
heat flux problem. An unsteady Navier-Stokes simulation on the same grid would take approx-
imately 8000 s because of the reduction in CFL number. However, as mentioned above, inclusion
of a turbulence model and non-equilibrium effects would demand a much higher computational
effort. If aeroelasticity effects have to be accounted for, i.e. a structural code has to be coupled to
the unsteady Navier-Stokes solver, the computational time will increase further. These calcu-
lations are valid for a single point of the flight trajectory. To simulate a complete flight envelope,
10-20 points may be needed. Recently, the coupling of electrodynamic effects (Maxwell's
equations) with the Navier-Stokes equations has become a topic of research. In addition, if CFD
is going to play a role in the aerodynamic design process, some sort of shape optimization for a
vehicle has to be possible, demanding a new level of performance in supercomputing.

Although from these mostly qualitative arguments it is obvious that for advanced aerospace
applications the teraflop machine can only be the first major step to bring up CFD to a level
where it can be used as a design tool, it is also safe to claim that the distributed memory MIMD
architecture is highly suitable for complex aerodynamic simulations.

2. INTERPROCESSOR COMMUNICATION

MIMD parallel computers offer great increases in speed over conventional supercomputers and
at a much lower cost per megaflop, but with increased software cost. Before making the effort to
parallelize a code such as NSS*, it is of great interest to predict the inefficiency, which is defined as

inefficiency = 1 - -,

where P is the number of processors, Tp is the time taken to run on these P processors and TI is
the time taken to run on a single processor. If the reasons for inefficiency are independent,
inefficiencies may be added. Many parallel codes, including NSS*, have an inner loop structure of
loosely synchronous cycles of computing and communicating, where the communication is
exchanges of data between processors whose physical domains are adjacent. If this is the case,

p TP
TI

STRATEGIES FOR PARALLELIZING A NAVIER-STOKES CODE 53

there are usually two contributions to inefficiency: load balance inefficiency and communication
inefficiency.=,

Load balance inefficiency occurs because the processors have different amounts of com-
putation to perform, which for NSS* means different numbers of grid points. The algorithm then
runs at the speed of the processor with the largest number of grid points, so the load balance
inefficiency is the maximum number of grid points divided by the average number of grid points
minus one.

Communication inefficiency arises from the time taken for messages to pass between the
processors. We first measured the communication rates between just two processors simply
exchanging messages. The Intel NX programming environment supports two ways of receiving a
message, crecv and irecv. A call to crecv blocks until a message has arrived and been copied into
the buffer provided by the application code; thus an exchange of data between two processors
consists of a csend then a crecv call. In contrast, the irecv mechanism consists of a processor first
‘posting a receive’, nominating a buffer into which incoming messages are to be placed, then
sending to the other processor with csend, then calling msgwait, which blocks until the expected
message has actually been received.

In Figure 1 we show the measured communication bandwidth for message exchange between
two processors, in megabytes per second, against the size of the exchanged messages. The
iPSC/860 machine achieves 2-80 Mbyte s - ’ and the Delta 9.80 Mbyte s-’ for exchange of
messages between two adjacent processors.

3. PARALLEL MULTIBLOCK

The NSS* code4 uses an implicit cell-centred finite volume scheme combining an oscillation-free
low-order scheme with a third-order MUSCL scheme by a local flux limiter function. Since the
finite volume technique and the multiblock approach are widely used, the same or similar
efficiency can be expected for a large class of Navier-Stokes solvers.

The solution domain consists of a connected set of logically rectangular blocks’ in three-
dimensional space. Each block has at most six neighbour blocks, although some at physical

9.82

2.80

10 100 lo00 1oooo 100o00 1o00Ooo
2-exchange message lenglh

Figure 1. Bandwidth for message exchange between two processors with the Delta and iPSC/860 machines

54 J. HAUSER AND R. WILLIAMS

boundaries have fewer neighbours. However, because of the complex geometry of the vehicle, the
connectivity of these blocks is irregular. If there are fewer blocks than processors, the blocks may
be split judiciously until each processor has one or more of the subblocks. The splitting should be
made so that each processor is in charge of approximately equal numbers of grid points. In
Figure 2 is shown a multiblock grid around the Hermes space plane, made with seven blocks. To
use this grid with a massively parallel machine, with perhaps 520 processors, we must split these
into many more smaller blocks and decide which processor is to take which of these smaller
blocks.

The code runs in loosely synchronous cycles of computation followed by data exchange across
the faces of the blocks. Each processor computes with the data of its block independently of the
others, then exchanges data with its neighbouring blocks. The exchange consists of sending
messages to each of the neighbour blocks, where the size of each message is proportional to the
number of grid points on the common face. The processor then waits to receive the corresponding
messages from the neighbour processors; when these are received, the cycle starts again with the
computation phase. The load balance inefficiency results from processors having different
numbers of grid points and the communication inefficiency results from the time taken by
message passing between the blocks. We should note at this point that even the sequential code
contains a kind of communication inefficiency because of the multiblock structure; the data from
the face of the sending block must be taken from memory and ordered, then unpacked into the
memory associated with the receiving block. Even if no message is to be sent, such as with a
sequential code, this packing and unpacking must still take place.

Figure 3 shows a logical or computational view of the seven blocks from Figure 2 with their
connectivity and the numbers of grid points in each direction, The total grid size is 4 160000,
obtained by multiplying together the numbers of grid points for each block and summing over the
seven blocks. The thick lines connecting the blocks indicate that two blocks have the same grid
dimensions on the corresponding faces, which is necessary to guarantee a slope-continuous grid.
Figure 4 shows the way in which this seven-block grid may be split into 512 subblocks. We have
chosen 512 processors because this is just less than the 520 processors of the Intel Touchstone
Delta machine. Each of the line textures in this figure represents a different way of splitting the
grid, there being five splitting planes in all, includng the splitting on the radial direction. With the
splitting as shown, each block has size 25 x 25 x 13, with 13 grid points in the radial direction. By

Figure 2. A seven-block grid around the Hermes space plane

STRATEGIES FOR PARALLELIZING A NAVIER-STOKES CODE 55

50

100

50

Figure 4. Subdivision of the seven-block grid into 64 equal subblocks. A further splitting in the radial direction produces
512 equal subblocks

splitting only four instead of eight times in the radial direction, we could also make 256 blocks of
size 25 x 25 x 26.

4. COMMUNICATION MODELLING

In addition to the block of data owned by each processor, there are two surrounding layers of
‘ghost’ points as shown in Figure 5. These ghost points are updated by the message-passing phase
of the calculation and provide data continuity from the neighbour block for the computation.
There are two layers of these ghost points because of the third-order nature of the solution scheme
used by NSS*.

If the processors have different numbers of grid points, we may expect some load balance
inefficiency; indeed, we expect that the time for the computational phase of the algorithm cycle is
determined by the processor with the largest number of grid points. The splitting of the Hermes
grid discussed above has the same number of grid points in each block, so that inefficiency results
only from the communication part of the cycle. If the computational time is more accurately
modelled, we must include the time taken to prepare and interpret the outgoing and incoming
messages. This time is different for the different blocks because interior blocks have six neigh-
bouring blocks whereas those at the physical boundary may only have one or two neighbours.

56 J. HAUSER AND R. WILLIAMS

Figure 5. A block of grid points surrounded by two layers of ghost points

For the purpose of estimating efficiency, we need to know some information about the
algorithm:

N , the total number of grid points
P, the number of processors being used
F , the number of floating point operations (flops) per grid point per iteration
B, the number of bytes per grid point to be exchanged between blocks.

We also need some information about the machine on which the algorithm is to run:

Tflop, the time for a processor to do a flop
Tcube, the time per byte for a cubic exchange.

Since the blocks are equal, each block contains NIP points. Thus we may define the linear
dimension of each block to be l=(N/P)'I3. The amount of data to be communicated for each
block is then 12BP per iteration; a factor two comes from the two layers of grid points to be
exchanged at each face and a factor six because each block has at most six faces. The number of
flops per iteration is F13. Thus the communication inefficiency is then the communication time
divided by the computation time, which is

For the NSS* code the algorithm parameters might be estimated as follows. As noted in
Section 3, we take N = 4 160 000 and P = 512, so that I = 20. The number of flops per grid point per
iteration is about F=5000 for this low-/high-order code with a real gas model. The data
exchanged across the boudaries are the five primitive variables (density, energy and three
components of momentum), so that B = 5 words = 40 bytes. We have taken the time for a floating
point operation to be TfIOp=O.2 p, corresponding to a conservative 5 Mflops for the i860
processor. The computation time per cycle is thus FI3 Tflop = 8 s.

We have measured Tcube with the following model of the parallel NSS* code. Our model
consists of a cubic lattice of equal blocks, so that each processor has exactly the same number of
grid points. Each block has six faces and on the other side of each face there may or may not be
another processor.

To simulate the irregularity caused by the geometry of the solution domain, we have made
random assignments of the blocks to the processors of the machine. Clearly, random assignment

STRATEGIES FOR PARALLELIZING A NAVIER-STOKES CODE 57

is not optimal; there are schemes6 for assignment of processors to blocks which tend to place
adjacent blocks in adjacent processors, and such a scheme would presumably improve the
communication performance.

Figure 6 shows the resuls for bandwidth. For the parameters given above, the number of bytes
to be exchaged at each face is 12H2 =0.192 Mbyte, so that Tcube is 0.16 s on 512 processors of the
Delta machine.

Thus our measurements predict that each iteration of the NSS* code with 4 million grid points
takes about 8 s, of which about 0.16 s is taken with communication, resulting in an efficiency of
over 95% with 512 processors of the Delta machine.

5. CONCLUSIONS

The communication timings indicate that a complex practical calculation, such as the accurate
solution of the Navier-Stokes equations with a complex geometry, can be expected to run on a
massively parallel machine with high efficiency. There are four main reasons for this high
predicted efficiency.

Complex algorithm. Solving the Navier-Stokes equations rather than the simpler Euler
equations means that derivatives of the physical fields are required, increasing the computation
per grid point. Furthermore, using a real gas model rather than an ideal gas, as well as the use of
simultaneous low- and high-order schemes and the semi-implicit naure of the code all increase the
amount of computation per grid point and hence improve the efficiency.

Hardware speed. We have made preliminary measurements of the communication rate on the
Intel Touchstone Delta machine, the result being an increase of a factor of 3.5 over the older
generation iPSC/860 machine.

Memory. Each processor of the Delta machine has a memory of 16 Mbytes, so that each
processor may work on a large block, thus reducing the surface-area-to-volume ratio of the block
and decreasing the amount of communication relative to calculation.

10 1 t=

1

0.

Delta 8x8~8

1
1 I 1 I I 1

500 OOO
10 100 1000 1oooo 1ooooo lo00

Cubic exchange message volume ooo

Figure 6. Bandwidth for cubic exchange. The width of the band shows minimum and maximum values for different
random assignments of processors to blocks

58 J. HAUSER AND R. WILLIAMS

Grid partitioning. Besides inefficiency caused by communication overhead, the code would also
be inefficient if the processors were unbalanced by having different numbers of grid points in each.
We have shown that it is possible to split a seven-block grid into 512 equal subblocks so that this
cause of inefficiency is eliminated. Furthermore, it is possible to make this splitting such that the
subblocks have reasonably low surface-area-to-volume ratios so that the communication in-
efficiency is low.

ACKNOWLEDGEMENTS

We would like to thank the Concurrent Supercomputing Consortium for our use of the Delta and
iPSC/860 machines, and Horst D. Simon of the Computer Science Corporation, NASA Ames
Reseach Center for useful discussions.

REFERENCES
1. H. Hornung and B. Sturtevant, ‘Challenges for high-enthalpy gasdynamics reseach during the 199Os’, Caltech Graduate

2. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker, Solving Problems on Concurrent Processors,

3. R. D. Williams, ‘Express: portable parallel programming’, Proc. Cray User Group, Austin, TX, October 1990, pp.

4. J. Hauser and H. D. Simon, ‘Aerodynamic simulation on massively parallel systems’, in W. Schmidt, A. Ecer, J. Hauser
and J. Periaux (eds), Parallel CFD. ‘91, Elsevier/North-Holland, Amsterdam, 1992.

5. J. Hauser, H. G. Paap, H. Wong and M. Spel, ‘A general multiblock surface and volume grid generation toolbox’, in
A. Arcilla, J. Hauser, P. R. Eiseman and J. F. Thompson (eds), Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields, Elsevier/North-Holland, Amsterdam, 1991.

6. R. D. Williams, ‘Performance of dynamic load balancing algorithms for unstructured mesh calculations’, Concurrency,
Practice & Experience, to be published.

Aeronautical Lab. Rep. FM 90-1, January 1990.

Prentice-Hall, New York, 1990.

347-352.

